B.A/B.Sc 5th Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics

Course: BMH5CC11 (Partial Differential Equations and Applications)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any six questions:

$6 \times 5 = 30$

- (a) Prove that the general solution of the semilinear partial differential equation [5] Pp+Qq=R is F(u,v)=0 where u and v are such that $u=u(x, y, z)=c_1$ and $v=v(x, y, z)=c_2$ are solutions of $\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}$ [c_1 , c_2 are constants].
- (b) By the method of characteristics, solve the Cauchy problem: $p_z+q=1$ with initial data [5] y=x, z=x/2.
- (c) (i) Find the partial differential equation of all planes which are at a constant distance 'a' [3] from the origin.
 - (ii) Explain the concept of Cauchy problem for second order partial differential equation. [2]
- (d) Derive the characteristic equations of the partial differential equation, [5] F(x, y, z, p, q)=0.
- (e) (i) When is a second order linear partial differential equation in two independent variables [3] classified into hyperbolic, parabolic and elliptic?
 - (ii) Determine the region where the given partial differential equation $yu_{xx} xu_{yy} = 0$ is [2] hyperbolic in nature.
- (f) Consider partial differential equation of the form ar+bs+ct+f(x, y, z, p, q)=0 in usual [5] notation, where *a*, *b*, *c* are constants. Show how the equation can be transformed into its canonical form where $b^2-4ac<0$.
- (g) Obtain the solution of the diffusion equation $u_t = K u_{xx}, K > 0$, in the region $0 < x < \pi, t$ [5] >0 subject to the conditions:
 - i) u(x, y) remains finite as $t \to \infty$.
 - ii) u = 0 at x = 0 and π for t > 0.

iii) at
$$t=0$$
, $u(x,t)=x$ when $0 \le x \le \pi/2$, $u(x,t)=\pi-x$ when $\pi/2 < x \le \pi$.

(h) Solve: $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$.

2. Answer any three questions: $3 \times 10 = 30$ (a) (i) Using the transformation $\alpha = \ln x$, $\beta = \ln y$, transform the equation [6]

 $x^{2}r - y^{2}t + xp - yq = \ln x$ to ordinary differential equations.

(ii) Determine the characteristics strips of the equation $z=p^2-3q^2$ and obtain the integral [4]

[5]

surface which passes through the curve x=t, y=0, $z=t^2$.

- (b) (i) Reduce the partial differential equation $z_{xx} + 2z_{xy} + z_{yy} = 0$ to its canonical form. [6]
 - (ii) Form the partial differential equation by eliminating *f* from the given relation: [4] $u = f(x^2 + 2yz, y^2 + 2zx).$
- (c) Solve: $z_{xx} 2z_x + z_y = 0$ by the method of separation of variables. Hence find the [6+4] solution, when z(0, y)=0 and $z_x(0, y)=e^{-3y}$.
- (d) (i) A tightly stretched string of length *l* with fixed ends is initially in equilibrium position. [6] It is set vibrating by giving each point a velocity $\sin^3 \pi x/l$. Find the displacement u(x,t).
 - (ii) Solve by the method of separation of variables $u_x = 4u_y$, given that $u(0, y) = 8e^{-3y}$. [4]
- (e) (i) Prove that the solution of the initial value problem, $u_{xx} u_{yy} = 0$, $|x| < \infty$, y > 0, [6]

$$u(x,0) = f(x), u_y(x,0) = g(x) \text{ is } u(x,y) = \frac{1}{2} [f(x+y) + f(x-y)] + \frac{1}{2} \int_{x-y}^{x+y} g(t) dt.$$

(ii) Show that the equation $x^2 z_{xx} - y^2 z_{yy} = 0$ is hyperbolic in nature everywhere in the xy- [4] plane. Find its characteristics.