B.A/B.Sc $5^{\text {th }}$ Semester (Honours) Examination, 2020 (CBCS)
 Subject: Mathematics
 Course: BMH5CC11 (Partial Differential Equations and Applications)

Time: 3 Hours
Full Marks: 60
The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:
 $$
6 \times 5=30
$$

(a) Prove that the general solution of the semilinear partial differential equation $P p+Q q=R$ is $F(u, v)=0$ where u and v are such that $u=u(x, y, z)=c_{1}$ and $v=v(x, y, z)=c_{2}$ are solutions of $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R} \quad$ [c_{1}, c_{2} are constants].
(b) By the method of characteristics, solve the Cauchy problem: $p z+q=1$ with initial data $y=x, z=x / 2$.
(c) (i) Find the partial differential equation of all planes which are at a constant distance ' a ' from the origin.
(ii) Explain the concept of Cauchy problem for second order partial differential equation.
(d) Derive the characteristic equations of the partial differential equation, $F(x, y, z, p, q)=0$.
(e) (i) When is a second order linear partial differential equation in two independent variables classified into hyperbolic, parabolic and elliptic?
(ii) Determine the region where the given partial differential equation $y u_{x x}-x u_{y y}=0$ is hyperbolic in nature.
(f) Consider partial differential equation of the form $a r+b s+c t+f(x, y, z, p, q)=0$ in usual notation, where a, b, c are constants. Show how the equation can be transformed into its canonical form where $b^{2}-4 a c<0$.
(g) Obtain the solution of the diffusion equation $u_{t}=K u_{x x}, K>0$, in the region $0<x<\pi, t$ >0 subject to the conditions:
i) $u(x, y)$ remains finite as $t \rightarrow \infty$.
ii) $u=0$ at $x=0$ and π for $t>0$.
iii) at $t=0, u(x, t)=x$ when $0 \leq x \leq \pi / 2, u(x, t)=\pi-x$ when $\pi / 2<x \leq \pi$.
(h) Solve: $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
2. Answer any three questions:

$$
3 \times 10=30
$$

(a) (i) Using the transformation $\alpha=\ln x, \beta=\ln y$, transform the equation $x^{2} r-y^{2} t+x p-y q=\ln x$ to ordinary differential equations.
(ii) Determine the characteristics strips of the equation $z=p^{2}-3 q^{2}$ and obtain the integral
surface which passes through the curve $x=t, y=0, z=t^{2}$.
(b) (i) Reduce the partial differential equation $z_{x x}+2 z_{x y}+z_{y y}=0$ to its canonical form.
(ii) Form the partial differential equation by eliminating f from the given relation: $u=f\left(x^{2}+2 y z, y^{2}+2 z x\right)$.
(c) Solve: $z_{x x}-2 z_{x}+z_{y}=0$ by the method of separation of variables. Hence find the solution, when $z(0, y)=0$ and $z_{x}(0, y)=e^{-3 y}$.
(d) (i) A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $\sin ^{3} \pi x / l$. Find the displacement $u(x, t)$.
(ii) Solve by the method of separation of variables $u_{x}=4 u_{y}$, given that $u(0, y)=8 e^{-3 y}$.
(e) (i) Prove that the solution of the initial value problem, $u_{x x}-u_{y y}=0,|x|<\infty, y>0$,
$u(x, 0)=f(x), u_{y}(x, 0)=g(x)$ is $u(x, y)=\frac{1}{2}[f(x+y)+f(x-y)]+\frac{1}{2} \int_{x-y}^{x+y} g(t) d t .$.
(ii) Show that the equation $x^{2} z_{x x}-y^{2} z_{y y}=0$ is hyperbolic in nature everywhere in the xyplane. Find its characteristics.

